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Abstract. We consider self-avoiding walks ( S A W )  on the diluted lattices on which the 
correlation function of the probability of occupied bonds (sites) obeys a power law r-' 
for large separation r. The s4w is studied by a renormalisation-group expansion in E = 4 - d 
and 8 = 4 - a. We find the extended Harris criterion, for n = 0 n-vector model or SAW, is 
that the disorder is irrelevant if a v  - 2 > 0, which does not depend on the relation between 
a and d. I f  the disorder is relevant, the S A W  has a new fixed point which has a correlation- 
length exponent v = 2 / a .  

1. Introduction 

Recently there has been much interest in self-avoiding walks (SAW) on random lattices 
(Chakrabarti and Kertesz 1981, Kremer 1981, Derrida 1982, Harris 1983, Kim 1983, 
1987, Rammal et al 1984, Roy and Chakrabarti 1987). These studies are concerned 
with SAW on lattices with randomness of short-ranged correlations. A common trend 
in studying physical phenomena (including S A W )  on the random medium is to take 
the medium as a simple lattice with only short-range-correlated quenched randomness 
as in the ordinary percolation model (Essam 1980). However, such models fail to 
describe many important aspects of physical phenomena on the disordered medium 
(Trugman and Weinrib 1985, Trugman 1986) and several authors have tried to modify 
the simple lattice models in order to resolve this shortcoming. 

Among variants of the disordered lattice models, we consider a model with a 
randomness of power-law correlation (Weinrib and Halperin 1983) to investigate the 
physical effect of a disorder which does not have short-ranged correlations. Let us 
make it clear what the power-law correlation means. Consider a bond (site) percolation 
problem, described by a variable Oh at each bond (site) b. Then Ob is 1 if the bond is 
occupied and 0 if the bond is vacant. Then the probability that a bond is occupied is 
p = ( O b ) ,  where ( ) means the configurational average. We define a correlation function 
g ( r b ,  r b ' )  as g ( r b ,  r b ' )  = ( O b O b z ) - ( O b ) 2 .  By a power-law correlation we mean that the 
correlation function g( rb ,  r b ' )  falls off with distance as a power law as g( rb ,  r b . )  - 
Ir, - rb.1-O. 

In this paper we are considering SAW on the lattice with randomness of the power-law 
correlation. In the weakly dilute limit, where p +. 1 or far above the percolation 
threshold, we have shown that the critical properties of SAW on the lattice with 
randomness of only short-ranged correlations is in the same universality class as that 
on the non-random lattice (Harris 1983, Kim 1983). This may imply that a direct 
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average over the SAW distribution function with the disorder of short-ranged correlations 
(Roy and Chakrabarti 1987) does not change the critical property of SAW, even though 
the logarithmic average over the S A W  distribution function (Derrida 1982) does change 
it. But in reality the randomness could have various dispersions in characteristic length 
scales and  various functional dependences. The main concern of this paper is thus to 
see whether or not the long-range-correlated randomness is a relevant perturbation for 
the critical properties of SAW (in the sense of renormalisation group ( R G ) ) .  

Our treatment of this problem is based on an  RG(E,  8 )  expansion which has been 
used by Weinrib and Halperin (1983) to study the critical phenomena of the n-vector 
model with long-range-correlated quenched disorder in case of n 3 1. Here E = 4 - d, 
S = 4 - a  and  d is the spatial dimension. Our main concern is the n = O  case of the 
n-vector model, because the generating function for S A W  corresponds to the partition 
function of an n-vector model of magnetism in the limit n + 0 (de  Gennes 1979). In 
the n Z 1 case, the extended Harris criterion (Weinrib and Halperin 1983) for the 
long-range-correlated disorder is that for a < d the disorder is irrelevant if av - 2 > 0, 
while if a > d the usual Harris criterion (Harris 1974) holds. In contrast when p 4 1 
the usual Harris criterion does not hold for the n = 0 n-vector model (Harris 1983, 
Kim 1983) and thus we need a new extended Harris criterion for the n = O  n-vector 
model. As we shall see the extended Harris criterion for the n = 0 case is that the 
disorder is irrelevant if av - 2  > 0 regardless of the relation between a and d. 

2. Field theory for the n = O  n-vector model 

The lattice randomness of the power-law correlation is equivalent to the random 
variation of the local transition temperature TJx) of the n-vector model as discussed 
by Weinrib and  Halperin (1983) who have shown that the effective Hamiltonian of an  
n-vector model with random variation of the local transition temperature with the 
power-law correlations is 

He, = Ho(r, U )  + Hr (1) 

where 

and 

where +"(x) = (4B(x) ,  4z"(x), . . . , #J ; (X) ) ,  a and p are replica indices which assume 
the values 1 , 2 , .  . . , m, and the limit m - 0  is implied. g ( x - y )  = g ( r )  satisfies the 
long-range dependence r-". Ho(r, U )  is the Hamiltonian for the non-random n-vector 
model because there is no replica-mixing term. H,, which is a replica-mixing term, 
represents the effect of randomness (Weinrib and Halperin 1983). Upon taking Fourier 
transforms +"(x)  + t$"(q), the replica-mixing interaction H,  is rewritten as 
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where 5, means the usual shorthand notation for 5 ddq/ (2n)d  and g (k )  is the Fourier 
transform of g ( r ) .  With g( r )  - rW4 for large r (Weinrib and Halperin 1983) 

g ( k ) -  U +  Wk(n-di ( 5 )  
when k + 0. In H ,  there are two quartic interactions. The quartic interaction propor- 
tional to U is the effect of randomness of the short-ranged correlation and it is not a 
relevant perturbation for the n = 0 n-vector model, because if we take both the SAW 

limit ( n  + 0) and the replica limit ( m  + 0) simultaneously the quartic perturbation U is 
the same as the interaction U in Ho (Kim 1983). In the limits n + O  and m+O the 
effective Hamiltonian is equivalent to 

Eletf = H,( r, U )  + Hr(  H') (6) 
and 

H r ( w ) =  I, k '4 -d '+" (q+k) .  + " ( - q ) + P ( q - k )  * + ' ( - q ' )  (7) 
g g' ".P 

where U = U - U. The only relevant interaction in our case for the randomness is the 
w interaction which represents the randomness of long-ranged correlation. Before we 
begin our RG study of Hamiltonian (6), the extended Harris criterion for n = 0 can be 
inferred by heuristic arguments (Harris 1974, Weinrib and Halperin 1983). If the w 
interaction in (6) is regarded as a perturbation to the non-random Hamiltonian Hc,( r, i i ) ,  
the free energy corresponding to He* of (6) can be expanded around the non-random 
free energy. Averaging over quenched random configurations, we obtain near the 
critical point 

(WO = FO + (Hr ( w))o ( 8 )  
where (-), means the average over non-random theory and F, is the free energy without 
randomness. The usual scaling estimates for F, and ( H , (  w ) ) ,  (Amit 1984, Harris 1983) 
near the critical point are 

t ( T - T,)/ T (9a)  Fo - t2-" 

and 

( H , ( w ) ) O -  w I, t-"f(kt)k'"-d'- W f - a + a Y .  (9b) 

The randomness of long-ranged correlations for the n = 0 n-vector model is relevant 
when (Hr(w)),>> Fo, i.e. when a u - 2 < 0 .  In contrast for the model n 2 1 we must 
consider H e f i ( r ,  U, U, w)  (see (1) and ( 5 ) )  instead of Ifefi of (6) and the extended 
criterion must be dependent on the relation between a and d as is stated in § 1 (Weinrib 
and Halperin 1983). 

3. RC recursion relations in E and S 

Proceeding in the usual way as shown by Weinrib and Halperin (1983), the differential 
recursion relations of parameters r, U and w for the Hamiltonian (6) to one-loop order 
(Amit 1984), i.e. order of O(E,  6 )  with 6 = O ( E ) ,  are as follows: 

d r / d l =  2r+8(U - w)  ( loa)  

dU/dl= ~U-32U*+48iiw- 1 6 ~ '  ( l o b )  
(10c) dw/dl= SW - 16Uw+ 1 6 ~ ' .  
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The recursion relations in (lOa)-(lOc) can be derived from the recursion relations 
(Weinrib and Halperin 1983) for the model n 3 1 in which the RG parameters are r, 
U, U and w by taking limits n + 0 and putting ti = U - U (Kim 1983). The physical 
region of parameter space is ii > 0 and w > 0 (Weinrib and Halperin 1983, Kim 1983). 
The fixed points of the recursion relations in (IO) are presented in table 1 and the 
eigenvalues of those fixed points in table 2. When d < 4 or E > 0 the Heisenberg fixed 
point is stable if E > 26. To the order of E and 6 this becomes - 2 > 0, where 
vH = ;( 1 + ~ / 8 )  is the correlation exponent of the Heisenberg fixed point (11). When 
d > 4 or E < 0 the Gaussian fixed point is stable if 6 < 0. To the order of E and 6 this 
also becomes avG - 2 > 0, where vc = f is the correlation exponent of the Gaussian 
fixed point. This shows that the non-random critical behaviour crosses over to the 
long-range-disorder critical behaviour when av - 2 < 0 regardless of the relation 
between a and d, which we have derived heuristically in § 2. When d < 4 the long-range- 
disorder fixed point is stable when E > 6 > e / 2  and is in the physical region, because 
ii* > 0 and w* > 0. The correlation-length exponent v in this case is v L  = 2 /a .  

When 6 + E or a + d the ii* and w* of the long-range-disorder fixed point diverge 
and the perturbative expansion of the recursion relations may break down. The 
recursion relations to one-loop order have a degeneracy in that ii - w appears in both 
expressions in ( lob )  and (1Oc). A similar degeneracy also appears to one-loop order 
in that U + w appears in recursion relations for the n 2 1 n-vector model (Weinrib and 
Halperin 1983). This leads the apparent divergence of ii and w of the long-range- 
disorder fixed point in table 1. A similar divergence also occurs at both the long-range 
unphysical fixed point and the long-range-disorder fixed point in the n 2 1 case (Weinrib 
and Halperin 1983). To two-loop order this degeneracy may be resolved if this case 
is similar to the short-range-disorder fixed point for the Ising model ( n  = 1 )  in which 
the degeneracy in U and U to one-loop order has been resolved to two-loop order 
(Jayaprakash and Katz 1977). If this case is not similar to the degeneracy of the 
random fixed point for the Ising model, then the degeneracy might not be solved by 

Table 1. Gaussian, Heisenberg and long-range-disorder fixed points of the recursion 
relations in (10). 

Fixed points 

Gaussian Heisenberg Long-range-disorder 

r* 0 --El8 -614 
li* 0 e132 S 2 /  16( E - 8 )  
W *  0 0 S(2S - ~ ) / 1 6 ( ~  - 8 )  

Table 2. Eigenvalues of the fixed points of the recursion relations in (10) 

Eigenvalues 

Gaussian Heisenberg Long-range-disorder 

A , = l / v  2 2 - ~ / 4  2 - s / 2  
A ,  E - E  it( E - 48) 
A 2  6 s - € 1 2  * [ S ( S  - ~ / 4 ) ~ +  ~ ~ / 2 ] ’ ” }  



SAW with a long-range-correlated disorder 605 1 

our approach. For both n 5 1 and n = 0 cases this degeneracy is an open question. 
When d > 4 and E < O  a similar problem occurs, but we cannot solve this problem 
within our perturbative approach. 

According to a recent classification by Roy and Chakrabarti (1987), this paper 
discusses a direct average over the SAW distribution function where there is a random- 
ness of long-ranged correlations. The logarithmic average over the SAW distribution 
function (Derrida 1982) is a more difficult question because even short-range-correlated 
disorder does have some relevancy. 

Throughout this paper we have treated the weakly dilute case in which p + 1. Near 
the percolation threshold the crossover behaviour of SAW is quite complex (Kremer 
1981, Kim 1987) and we cannot apply our extended criterion to SAW around percolation 
threshold. 
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